Improving Streamflow Prediction Using Remotely-Sensed Soil Moisture and Snow Depth
نویسندگان
چکیده
The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) retrievals to improve hydrological modeling in such areas. In particular, remotely sensed SM and SD retrievals are applied to filter errors present in both solid and liquid phase precipitation accumulation products acquired from satellite remote sensing. Simultaneously, SM and SD retrievals are also used to correct antecedent SM and SD states within a hydrological model. In synthetic data assimilation experiments, results suggest that the simultaneous correction of both precipitation forcing and SM/SD antecedent conditions is more efficient at improving streamflow simulation than data assimilation techniques which focus solely on the constraint of antecedent SM or SD conditions. In a real assimilation case, results demonstrate the potential benefits of remotely sensed SM and SD retrievals for improving the representation of hydrological processes in a headwater basin. In particular, it is demonstrated that dual precipitation/state correction represents an efficient strategy for improving the simulation of cold-region hydrological processes.
منابع مشابه
Land Surface Model Data Assimilation for Atmospheric Prediction
Accurate latent and sensible heat flux prediction in response to land surface soil moisture at midlatitudes has been shown to be as important as sea surface temperature in making accurate precipitation prediction at mid-latitudes over land (Koster et al., 2000). Unfortunately, land surface models typically give a poor prediction of soil moisture and atmospheric feedback, with large differences ...
متن کاملRemotely Sensed Soil Moisture over Australia from AMSR-E
Soil moisture can significantly influence atmospheric evolution. However the soil moisture state predicted by land surface models, and subsequently used as the boundary condition in atmospheric models, is often unrealistic. New remote sensing technologies are able to observe surface soil moisture at the scales and coverage required by numerical weather prediction (NWP), and there is potential t...
متن کاملSoil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model
[1] Climate model prediction skill is currently limited in response to poor land surface soil moisture state initialization. However, initial soil moisture state prediction skill can potentially be enhanced by the assimilation of remotely sensed near-surface soil moisture data in off-line simulation. This study is one of the first to evaluate such potential using actual remote sensing data toge...
متن کاملRoot Zone Soil Moisture Retrieval Using Streamflow and Surface Moisture Data Assimilation in Nested Catchments
Correct knowledge of soil moisture is important for improving the prediction of coupled land surface atmosphere interactions. This is due to the control that soil moisture exerts on the latent and sensible heat flux transfer between the land surface and atmosphere. Because of this strong dependence on moisture availability, improved atmospheric prediction requires correct initialisation of soil...
متن کاملA Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals
A novel methodology is introduced for quantifying the added value of remotely sensed soil moisture products for global land surface modeling applications. The approach is based on the assimilation of soil moisture retrievals into a simple surface water balance model driven by satellite-based precipitation products. Filter increments (i.e., discrete additions or subtractions of water suggested b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016